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Abstract— Directory is a specialized data store optimized for ef-

ficient information retrieval which has standard information model,
naming scheme, and access protocol for interoperability over net-
work. It stores critical data such as user, resource, and policy infor-
mation in the enterprise computing environment. This paper presents
a performance driven design of a transactional backend of the OpenL-
DAP open-source directory server which provides improved reliabil-
ity with high performance. Based on a detailed system-level profiling
of OpenLDAP on the Linux OS, we identify major performance bot-
tlenecks. After investigating the characteristics of each bottleneck,
we propose a set of caching techniques in order to eliminate them:
directory entry cache, search candidate cache, IDL (ID List) cache,
IDL stack slab cache, and BER (Basic Encoding Rule) transfer cache.
The performance evaluation with a directory workload convinces that
these caches, when combined, yields a 126% throughput increase and
a 59% latency reduction with a reasonable level of storage overhead.

I. INTRODUCTION

A directory provides a logically centralized view of informa-
tion in a distributed environment, enabling different platforms
to access a shared, consistent information base. By sharing
critical information such as user, resource, and policy data, in-
teroperability among heterogeneous systems and services can
be significantly enhanced. As IT services become available to
customers in a dynamic, on-demand basis, it becomes vital to
provide standard ways of information access and sharing.

LDAP (Lightweight Directory Access Protocol) is a stan-
dard access protocol for OSI X.500 [1] conforming directo-
ries. Because LDAP can run on top of TCP/IP instead of the
OSI protocol stack, LDAP was first used to alleviate the client
side protocol overhead. LDAP clients connect to an LDAP
gateway that forwards requests and responses to and from an
X.500 directory. Further in the direction of being lightweight,
it has become commonplace to use standalone LDAP direc-
tory servers that store directory data directly in them without
the need of separate X.500 directories.

Because directory searches constitute the majority of direc-
tory operations, it is particularly important to provide a high
performance directory search in terms of latency and through-
put. Low latency is essential to low delay IT services that rely
on the directory. High throughput is essential because one di-
rectory server should be able to process a large number of re-
quests from multiple directory clients simultaneously. It is also
important to provide a highly reliable directory service since
critical data are usually stored in enterprise directories.

This paper presents our efforts to enhance OpenLDAP [2],
an open-source directory software suite. More specifically, this
paper focuses on the performance and reliability of slapd, the
standalone LDAP server of OpenLDAP. We participated in the
development of back-bdb, a transactional backend of OpenL-
DAP, which directly utilizes the underlying Berkeley DB with-
out the general backend API layer used in the existing OpenL-
DAP backend, back-ldbm. Back-bdb provides a higher level of
reliability and concurrency. The transaction support of back-
bdb makes directory recoverable from temporary failures and
disasters, while the page level locking enables concurrent ac-
cess to directory by the directory server and various admin-
istrative tools at the same time. However, because the initial
design of back-bdb did not exhibit the expected performance,
we analyzed its performance through a detailed system-level
profiling. Based on the bottleneck identification and analysis,
we propose five distinct caches for OpenLDAP back-bdb: en-
try cache, candidate cache, IDL (ID List) cache, slab cache for
the IDL stack, and BER (Basic Encoding Rule) [3] cache for
transfer contents. The combined use of these caches yields a
performance improvement of 126%. This paper analyzes the
efficacy and the performance impact of these caches in detail.

The next section will introduce LDAP and the OpenLDAP
open-source project. Section III will describe the architecture
of OpenLDAP directory server, slapd, focusing on the design
of the search operation in back-bdb. Section IV will introduce
five caching approaches proposed in this paper. Section V will
describe the experimental setup used throughout the paper. In
Section VI, the design and performance analysis of the entry
cache for back-bdb will be described. After presenting the pro-
filing mechanism used to identify performance bottlenecks in
Section VII, the following three sections present the design and
performance analysis of the four caches : the candidate cache
in Section VIII, the IDL cache and the IDL stack slab cache
in Section IX, and the BER cache in Section X. Section XI
concludes the paper.

II. LDAP AND OPENLDAP

LDAP (Lightweight Directory Access Protocol) [4] is a
standard directory access protocol of the Internet to access di-
rectories having the X.500 [1] naming and data models [5].

LDAP defines an access protocol over TCP/IP that is a well
defined subset of the X.500 DAP (Directory Access Protocol)
to enable lightweight implementations. Its protocol syntax is
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defined in ASN.1 (Abstract Syntax Notation One) [6]. LDAP
provides ten directory operations : search, compare, add,
delete, modify, modifyDN, bind, unbind, abandon, and ex-
tended. The exchanged protocol messages between the server
and the client are encoded by using BER of ASN.1. LDAP
uses a restricted form of BER to reduce the complexity of the
BER encoding/decoding process [4]. The attribute values are
in a string format (LDAPString) in LDAP.

LDAP uses a subset of the X.500 naming and data models
and organizes directory entries hierarchically in a DIT (Direc-
tory Information Tree). A DIT can be composed of multiple
subtrees residing on different LDAP servers. A referral mech-
anism is provided to allow clients to chase a link across servers
when they encounter such boundaries. On the other hand, an
LDAP server may host a forest consisting of multiple DITs.

An entry is identified by a unique name called RDN (Rel-
ative Distinguished Name) among its siblings under the com-
mon superior entry and by a unique name called DN (Distin-
guished Name) within the entire DIT. One or more attribute
values of an entry form RDN of the entry. DN can be formed
by concatenating RDN and DN of its immediate superior.

An entry consists of a set of attributes permitted by the en-
try’s object class defined in the directory schema. and system
and user schema definitions. An attribute consists of an at-
tribute type followed by one or more attribute values. The at-
tribute type designates the name and OID (object identifier) of
the attribute and the syntax, the matching rules, and the cardi-
nality of the attribute values [7]. The object class designates
entry’s name, OID, description, and its superclass as well as
the required and allowed attributes. The object class hierarchy
represents the class hierarchy of entries, whereas DIT repre-
sents the hierarchy of directory entry objects. An object class
inherits attributes from its superclass.

OpenLDAP [2] is an open-source directory software suite
conforming to the LDAPv3 protocol [4] and supporting vari-
ous platforms including Linux, FreeBSD, Apple Mac OS/X,
Sun Solaris, Microsoft Windows. Currently, it sports a rich
set of features [8] : LDAPv3 over both IPv4 and IPv6, SASL
(Simple Authentication and Security Layer) support, TLS
(Transport Layer Security) / SSL (Secure Socket Layer) sup-
port, access control, internationalization, multiple database in-
stances, multi-threading, replication, configurability, generic
modules API for extension, and various backends.

From OpenLDAP 2.1, back-bdb, a transactional backend
which directly interacts with the Berkeley DB, is being pro-
vided as a default backend. Because the database access
is transaction-protected and write ahead logs are maintained
while database is modified, directory operations can roll back
from a temporary failure and directory data can be recovered
from a database crash. In addition, multiple directory ac-
cess and modification requests can run with high concurrency
which leads to high performance operations. Also it is possi-
ble to run multiple applications that access a single directory
database at the same time.

The OpenLDAP software suite consists of a standalone di-

rectory server (slapd), a replication daemon (slurpd), client
APIs (C, C++, Perl ...), and various client and server side tools.
Slapd is a multi-threaded directory server that can be easily
configured to support various types of backends.

The OpenLDAP directory software suite is currently being
deployed as the default directory software in most Linux distri-
butions including RedHat and SuSE. OpenLDAP is also being
widely used in many enterprise IT environments.

III. LDAP SEARCH OPERATION

This section will introduce the search operation and the ar-
chitecture of OpenLDAP slapd directory server.

A. LDAP Search Request

The following is the definition of the search request [4]:

SearchRequest ::= SEQUENCE {
baseObject LDAPDN,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2) },

derefAliases ENUMERATED {
neverDerefAliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
derefAlways (3) },

sizeLimit INTEGER (0 .. maxInt),
timeLimit INTEGER (0 .. maxInt),
typesOnly BOOLEAN,
filter Filter,
attributes AttributeDescriptionList }

baseObject defines the DN of the base object entry, the
reference point relative to which the search is performed. If
scope is baseObject, only the baseObject is searched; if
singleLevel, all direct subordinate entries of the base object
are searched; if wholeSubtree, the entire subtree rooted at
the base object is searched. derefAliases indicates whether
to dereference an aliases encountered during the search. Pos-
sible options are 1) always-dereference, 2) never-dereference,
3) dereference only upon positioning the base object, and 4)
dereference except for the base object positioning. size-

Limit restricts the number of entries to be transmitted as the
result of a search, while timeLimit restricts the maximum
time in seconds allowed for a search. If typesOnly is set to
TRUE, only the attribute types will be sent to the client without
the attribute values. filter defines the matching condition of
the search. The basic component of the filter is Attribute-
ValueAssertion (AVA) that tests an attribute against a value
according to a matching rule. attributes specifies a list of
attributes to be transmitted to the client when an entry matches
the search filter. An empty list or ”*” in attributes means
that all user attributes are requested.

B. OpenLDAP Search Implementation

Fig. 1 illustrates how the search operation is performed by
the slapd OpenLDAP directory server. Also shown in the
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Fig. 1. Architecture of the OpenLDAP Directory Server (slapd) : Search Operation.

figure is the architecture of the OpenLDAP directory server
viewed from the perspective of the search operation.

Slapd consists of the frontend and the backend. The frontend
manages the LDAP connections with clients and manages the
pool of LDAP worker threads. When a request arrives from
a client, the frontend dispatches an available worker thread
from the thread pool to process the request. Then, as shown
in Fig. 1, it extracts the search specification from the LDAP
client’s search request PDU (protocol data unit) and build the
internal representation of the search specification : the base ob-
ject DN is normalized, the internal representation of the search
filter is formed, and the list of attribute descriptions is built
from the attribute names requested by the client.

Fig. 1 also illustrates the implementation of the search oper-
ation inside the back-bdb backend. Back-bdb maintains three
distinct types of databases : DN2ID, INDEX, and ID2ENTRY.
The Sleepycat BDB stores in the database (key, data) pairs.
The data can be searched for by using the corresponding key
value as the index. In back-bdb, every directory entry is given
a unique identifier, ID. The ID2ENTRY database stores (ID,
directory entry) pairs in it. A directory entry can be retrieved
by using the corresponding ID as the access key.

The DN2ID database stores ( � DN, IDL) pairs, where ���� ��������	�
 . DN is the name of the search base. IDL is an ID
or a list of IDs of either the base entry ( � ), immediate subor-
dinates ( � ), or the whole subtree under the base entry ( 	 ).

The INDEX database is created for fast, indexed searches.
The INDEX database stores (key, IDL) pairs, where key is the

value of an attribute possibly used for matching. (key, IDL)
pairs for all possible key values under the specified indexing
methods are stored in the INDEX database corresponding to
the attribute.

Back-bdb first retrieves the base entry from the database. As
the DN of the base is given, we first retrieve the ID of the base
from the DN2ID database. Then, we retrieve the entry from
the ID2ENTRY by using the retrieved ID as the access key.

Back-bdb, then, builds the IDL of the search candidate en-
tries. The building of the search candidate IDL is heavily re-
lying on the indexing. Not all entries in the search candidates
may turn out to be the matching entry of the search because of
combined or inappropriate indexing.

The next step is to loop through the IDs in the search can-
didate IDL to select directory entries that actually match the
filter. Because the attribute types and values of an entry can
be accessed after the entry is retrieved from the ID2ENTRY
database in the IDL loop, we can test the scope and the filter
with the entry. If the entry matches, back-bdb transmits the
entry to the client after encoding the entry by using the BER
encoding of ASN.1. After iterating all the candidate entries in
the IDL, back-bdb notifies the client of success or failure by
sending the search response.

IV. PROPOSED CACHING APPROACHES

In order to improve the performance of back-bdb, we pro-
pose the following caching mechanisms in this paper.
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The first is an entry cache (labeled A in Fig. 1) for back-bdb.
As in back-ldbm, the entry cache of back-bdb stores in memory
the directory entries recently retrieved from the ID2ENTRY
database. The cache is organized as two AVL trees, one keyed
by the entry DN and another by the entry ID. The DN AVL
tree is used for the base object access, while the ID AVL tree
is used for the candidate entry access. The entry cache is in-
tegrated into the slapd back-bdb in a way that cooperates with
the database transaction rollback and locking mechanisms to
ensure consistency and deadlock freedom.

The second one is a candidate cache (labeled B in Fig. 1)
that stores the recently established search candidate IDLs.
Through a detailed performance analysis, we confirmed that
it is very effective in improving the performance of the search-
only directory access scenario. The two performance bottle-
necks of back-bdb identified by system-level profiling, the in-
dex database access and the IDL stack management overhead,
proved to be successfully eliminated by the candidate caching.

Although the search-only directory is not uncommon, it
is more beneficial to provide a general solution for both the
search-only and the search-update workloads. In order to re-
duce the index database access overhead, we propose an IDL
cache (labeled C in Fig. 1) that stores in memory the recently
accessed IDLs from the INDEX and the DN2ID databases. In
order to reduce the IDL stack allocation and deallocation over-
head, we propose a slab cache (labeled D in Fig. 1) that retains
once allocated memory chunks of the IDL stack. The com-
bined use of the IDL and the IDL stack slab cache proved to
effectively improve the performance of both the workloads.

We also propose a BER cache (labeled E in Fig. 1) that stores
the BER representation of the search result entries. A prelimi-
nary performance result shows a sizable performance gain.

V. EXPERIMENTAL FRAME

The performance of directory servers was measured by us-
ing the DirectoryMark [9] benchmark suite which provides a
set of tools to generate LDIF files and test scripts along with
the request generation engine. The generated DIT is an enter-
prise directory consisting of 10 organizational units. The in-
etOrgPerson entries are regimented under the organizational
units. Two different types of LDAP use scenarios were used as
input workloads in the experiment: 1) The messaging scenario
models a messaging server (i.e. mail transfer agent) searching
for routing information by contacting a directory server. All
search requests are exact matches on the UID attribute of in-
etOrgPerson. It is assumed to bind only once at the start of
the run. 2) The addressing scenario models the behavior of
address lookup clients searching for user information. The re-
quests consist of a sequence of searches with a predefined filter
combinations: 24% of them are substring matches for the UID
attribute and 8% of them are not-found; the rests are the equal-
ity matches for a small number of attributes. It is assumed that
there is one anonymous bind every five requests.

A 10,000-entry DIT was used for the test. Attributes re-
turned to the clients are objectClass, cn, sn, descrip-
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Fig. 2. Performance Comparison of back-ldbm and back-bdb.

tion, facsimileTelephoneNumber, l, postalAddress,
telephoneNumber, and title.

The directory server system under test is an IBM Intellista-
tion (Pentium III 1GHz, 512MB of main memory) which runs
RedHat Linux 7.3 (Kernel ver 2.4.18-3). The DirectoryMark
client is configured to consist of 16 request threads.

VI. ENTRY CACHE FOR TRANSACTIONAL BACKEND

The back-bdb backend of OpenLDAP 2.1 utilizes the trans-
actional data store of BDB in order for multiple threads to ac-
cess databases concurrently. A page level read-write locking
is implemented by BDB for concurrent access. BDB avoids
deadlocks by returning a deadlock error. With the help of the
transactional support, applications can abort a transaction upon
a temporary error situation such as deadlock error and roll back
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TABLE I. Linux Execution Profile of OpenLDAP 2.1 Server with back-bdb.

slapd 31.47% libdb-4.0 26.99% vmlinux 13.79%
ber printf 2.01% ham item 6.55% do zap page range 2.26%
send search entry 1.81% ham lookup 6.54% get unmapped area 0.72%
ber write 1.51% ham get cpage 2.22% save i387 0.60%
is ad subtype 1.48% ham item next 1.81% do signal 0.39%
ad inlist 1.29% lock get internal 1.16% schedule 0.38%

libc 15.57% libpthread 9.09% misc 3.09%

TABLE II. Linux Execution Profile of OpenLDAP 2.1 Server with back-ldbm.

slapd 42.72% libdb-4.0 4.44% vmlinux 11.44%
ber printf 2.58% bam cmp 0.87% save i387 0.77%
send search entry 2.46% bam search 0.61% schedule 0.70%
ber write 2.05% memp fget 0.40% send sig info 0.56%
is ad subtype 1.99% db c get 0.29% restore i387 0.54%
ber put seqorset 1.74% memp fput 0.27% tcp sendmsg 0.53%

libc 23.08% libpthread 14.06% misc 4.26%

from the start without committing any changes to the database.
On the next try of the same database access, chances are high
that the cause of the error has disappeared. Upon a permanent
error or crash, on the other hand, applications can recover from
the write ahead logs to restart from a known, clean state.

The improved reliability should be achieved without com-
promising performance - especially for searches, because di-
rectories usually store mostly-read data. One of the most effec-
tive mechanism to boost the directory search performance is to
cache recently accessed directory entries in the memory [10].

However, it is not straightforward to design a directory entry
cache for back-bdb, because it has its own locking and trans-
action mechanism for concurrent database access The entry
cache of back-ldbm has a relatively straightforward design be-
cause there is only one giant lock for backend access.

Because a database page lock will not be released before
transaction commit and multiple database objects can reside in
a single page, deadlock situations may arise if the entry cache
starts using its own locking mechanism. Through discussions
in the OpenLDAP community, we have decided to utilize the
locking mechanism of BDB for the entry cache as well. Hence,
the access to cache entries was made to be protected by the
deadlock avoidance mechanism of the BDB page locking.

The entry cache also interferes with the transaction because
it does not have any rollback capability and it is possible for
a cache update to fail. We’ve utilized the two phase com-
mit mechanism of BDB. Before updating the entry cache,
TXN PREPARE() is invoked to ensure that the transaction is
guaranteed to commit. If so, the cache is updated and in turn
the transaction is committed by TXN COMMIT(). Otherwise,
the transaction is aborted and rolled back to start without mak-
ing any changes to the entry cache.

Fig. 2 illustrates the performance of OpenLDAP 2.1 server
with back-ldbm and back-bdb backends. Fig. 2 (a) shows the
search operation latency (do search()) in � sec and Fig. 2
(b) shows the search throughput in operations per second. The
latency and throughput of the messaging and address look-up
scenarios are shown together. The performance of the address

look-up scenario is lower than that of the messaging scenario,
and more sensitive to the changes in entry cache size. This is
because 24% of search requests are substring searches result-
ing in multiple search candidates. Because every candidate en-
try should be retrieved from the database to check for a match
and should be transmitted if it matches, the address look-up
scenario requires more computing, IO, and network bandwidth
per search request than does the messaging scenario. The ef-
fect of cache misses is more significant when there are more
entries to check for a search request.

Although the entry cache for back-bdb improved throughput
by 50.5% (1006 to 1514) for the messaging scenario and 71.2%
(721 to 1234) for the addressing scenario, the performance of
back-bdb turned out to be lower than that of back-ldbm.

VII. PROFILING OF OPENLDAP UNDER LINUX

In order to gain insights on potential performance bottle-
necks, we performed a system-level profiling of OpenLDAP
2.1 server running on top of Linux. We used tprof, IBM
Trace Facility for Linux (x86), which can collect execution
profiles of all execution entities of the Linux OS including user
processes (thread-level), libraries, and the kernel itself. It is
ideal for OpenLDAP 2.1 performance analysis, because the ex-
ecution profile can be obtained without any loss of concurrency
and different sub-modules of the OpenLDAP directory server,
i.e. the slapd code, BDB and system libraries, and Linux kernel
routines, can be analyzed in detail down to the function level.
Tprof provides the number of performance counter events of
each routine that was running when a predefined event occurs.
We used INST RETIRED performance counter event [11] of
Pentium with 10000x sampling.

Table I and Table II show profiling results of slapd with
back-bdb and back-ldbm backends, respectively. Symbols in
boldface represent different entities of the OpenLDAP direc-
tory server and the Linux OS: slapd threads, the Linux kernel
(vmlinux), the BDB library (libdb), the C library (libc), the
pthread library (libpthread), and miscellaneous entities. Top
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TABLE III. Linux Execution Profile of OpenLDAP 2.1 Server with Candidates Cache.

slapd 44.14% libdb-4.0 3.45% vmlinux 12.69%
send search entry 2.70% lock get internal 0.49% save i387 0.87%
ber printf 2.69% ham func5 0.36% schedule 0.69%
avl find 2.27% ham lookup 0.36% send sig info 0.64%
ber write 2.24% ham item 0.23% restore i387 0.61%
is ad subtype 2.18% lock put internal 0.21% do signal 0.54%

libc 21.54% libpthread 13.66% misc 4.52%

five most frequently observed routines are shown for slapd,
libdb, and vmlinux. From the comparison of Table I and Ta-
ble II, we can see that 1) slapd of back-bdb is less frequently
observed than that of back-ldbm upon performance counter
events; 2) libdb of back-bdb occupies much larger propor-
tion of the execution and much of them are attributed to ham
(hash access method) routines; 3) do zap page range() and
get unmapped area() routines of the Linux kernel are fre-
quently observed with back-bdb, but not with back-ldbm.

Because the hash access method is used only for the INDEX
database of back-bdb design (other databases make use of the
btree access method), the indexing database access turns out
to be the source of contention. The indexing database con-
tention is twofold: 1) back-bdb stores individual ID in an IDL
as a separate (key, data) pair by using the cursor operation with
DB MULTIPLE option; 2) there is an overhead of the transaction
environment even for non-transactional operations.
get unmapped area() is a Linux kernel routine that finds

an unused virtual memory range for memory allocation, while
do zap page range() removes user allocated page frames
that map to a given virtual memory range [12]. Frequent in-
vocations of these routines mean that memory is allocated,
used, and deallocated frequently. What makes situations worse
is that do zap page range() requires page table operations,
a flush of cache contents (in some architectures), and a TLB
shootdown. The IDL stack allocation and deallocation in the
search candidates() was identified as the source of these
memory mapping / unmapping kernel calls. An IDL stack is���
depth ������� BDB IDL UM SIZE �
	���
������ � ID ��� in size. Be-

cause the minimum depth value is 2 and BDB IDL UM SIZE is
128K, IDL stack size is at least 1.5MB. The memory allocation
and free routines (malloc()/free()) uses mmap() instead of
brk() for objects larger than a threshold.

VIII. SEARCH CANDIDATES CACHING

Because both the sources of the back-bdb contention are at-
tributed to the search candidate list construction, we first de-
signed and implemented a candidate cache that stores estab-
lished search candidates in an AVL tree. Search candidates in
bdb search() are represented as an IDL that is obtained by
combining (union or intersection) multiple IDLs from DN2ID
and/or INDEX databases. The candidate cache is indexed by
the base, scope, and filter of the search request. The candidate
cache is implemented as a separate AVL tree for each base
entry. An optimization of the candidate caching is that we

can remove unmatched entries from the candidate cache en-
try in memory as we iterate the candidate entries to find actual
matches in order to make candidate list more accurate.

For the messaging scenario, back-bdb with the candidate
cache exhibits 349.5 � sec of the search latency and 2378
searches/sec of search throughput. Compared to the back-
ldbm’s performance shown in section VI, back-bdb equipped
with a candidate cache performs better. In the experiment, the
candidate cache is constructed at the context prefix because it
is the search base of the messaging scenario. The size of the
candidate cache was set to unlimited.

Table III shows the profiling result of back-bdb with the can-
didate cache. We can see that the utilization of the slapd code
is increased from 31.47% to 44.14%. This is in fact higher
than that of back-ldbm (42.72%). The number of libdb in-
vocations dropped significantly from 26.99% to 3.45%. The
candidate cache proved very effective in reducing the pressure
to the hash access method. From the table we can also observe
that the page allocation and deallocation routines of vmlinux
do not show up with the introduction of the candidate caching.

Although the candidate cache is very effective for the search
performance improvement, the advantages started diminishing
with the increasing presence of the update requests. This is be-
cause the entire candidate cache entries are to be effectively in-
validated once a single update operation is processed. Because
search candidates are constructed entities from multiple IDLs,
it is not easy to invalidate only those candidate cache entries
that should be invalidated when there is a change in the INDEX
or DN2ID databases. With a timestamp-based lazy invalida-
tion scheme, the performance of back-bdb with the candidate
cache proved unaffected by the presence of update requests
at one entry addition per 1000 messaging scenario searches.
As update frequency increases, however, the candidate caching
would have diminishing returns. Another disadvantage of the
candidate caching is the unbounded size of candidate cache for
100% of coverage of search requests. A new candidate cache
entry will be created whenever a search request having a new
search specification arrives.

IX. IDL AND IDL STACK CACHING

Two major disadvantages of the candidate caching, the in-
validation and the unbounded size problem, can be solved by
having a cache that directly stores the INDEX and DN2ID
database entries, i.e. IDLs. The IDL caching is imple-
mented inside the bdb idl fetch key() routine as an AVL
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tree. Upon insertion or deletion of an ID in the databases,
only the affected index database entry is invalidated (in
bdb idl insert key() and bdb idl delete key()). Also
the size of the IDL cache is bound by the size of the INDEX
and DN2ID databases. The IDL cache is keyed both by the
identity of the database and the key of the database entry.

The dotted lines in Fig. 3 show (a) latency and (b) through-
put of back-bdb with the IDL cache for the messaging scenario.
X-axis is the size of the IDL cache in the number of entries.
The left-most points are the latency and the throughput of the
back-bdb without IDL caching. An LRU replacement scheme
is used when an overflow occurs in the IDL cache.

The IDL cache in the experiment proved to reduce la-
tency by 17.4% from 586.6 � sec to 484.54 � sec and to boost
throughput by 17.8% from 1514 ops/sec to 1784 ops/sec. The
initial performance degradation observed at the IDL size of
1000 entries is from the overhead of IDL cache management.

Table IV shows the execution profile of back-bdb equipped
with the IDL cache. The utilization of slapd is 40.37%. We
can see a significant reduction of libdb hash access method
invocations due to the introduction of the IDL cache.

We identified the IDL stack management as the source of
frequent page allocation / deallocation in the kernel. The IDL
stack should be allocated and deallocated for every search op-
eration because the size of the IDL stack is larger than the
mmap() / brk() threshold as explained in Section V.

In order to eliminate frequent allocation and deallocation,
a slab cache is designed for the IDL stack. Because the IDL
stack size is determined by depth, we provide slabs of dif-
ferent sizes according to depth. Because its value is small in
common cases, it is usually not required to provide large slabs.
The maximum number of slabs that can be in use at the same
time is limited by the number of slapd worker threads.

Table V shows an execution profile of back-bdb equipped
with both the IDL cache and the IDL stack slab cache.
As expected, the invocation of do zap page range() and
get unmapped area() do not show up in the execution pro-
file after adding the IDL stack slab cache. The slapd utilization
is 43.31% which is slightly higher than that of back-ldbm.

The solid lines of Fig. 3 show the search (a) latency and (b)
throughput of back-bdb equipped with both caches. The steep
decrease in latency and increase in throughput from no IDL
/ no Slab to 1000-entry IDL / Slab proves the effectiveness
of the IDL stack slab cache. The performance boost between
these two points is around 12%. Considering the performance
overhead observed by the introduction of the IDL cache, the
actual performance benefits by the slab cache must be larger.
The improvement by the full IDL caching with the IDL stack
slab caching is 27.5% reduction in latency (from 587 to 426)
and 31.6% increase in throughput (from 1514 to 1993).

X. BER CACHING OF TRANSFER CONTENTS

We also propose a BER cache that stores transfer con-
tent between the LDAP server and client. Because a large
portion (more than 10%) of the execution profile events
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Fig. 3. Performance of back-bdb with IDL/Slab Cache.

belongs to BER encoding routines such as ber printf()

and ber write(), caching BER encoded representation of
searched entries should improve performance. Because a BER
cache entry represents an incarnation of the entry with a spe-
cific set of attribute types and values, which are subject to the
search filter, the attribute set, and the access control lists, the
BER cache will be effective in rather static directory use sce-
narios where a set of search specifications are pre-determined
and seldom change. Example is the Bluepage directory of
IBM. The Bluepage web application has a clearly defined set of
pre-determined search filters and attribute sets. Access control
information does not change frequently in such a directory.

A prototype BER cache design proves its effectiveness with
the DirectoryMark messaging scenario: a 7.1% throughput in-
crease is obtained when we add a BER cache to back-bdb with
no IDL / no Slab cache, while a 13.3% throughput increase is
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TABLE IV. Linux Execution Profile of OpenLDAP 2.1 Server with IDL Cache.

slapd 40.37% libdb-4.0 7.14% vmlinux 16.64%
ber printf 2.28% lock get internal 0.69% do zap page range 2.82%
send search entry 2.24% ham lookup 0.67% save i387 0.76%
is ad subtype 1.96% db tas mutex lock 0.46% schedule 0.68%
ber write 1.92% ham item 0.45% send sig info 0.61%
avl find 1.86% ham get cpage 0.39% get unmapped area 0.50%

libc 19.33% libpthread 12.78% misc 3.74%

TABLE V. Linux Execution Profile of OpenLDAP 2.1 Server with IDL / Slab Cache.

slapd 43.31% libdb-4.0 7.41% vmlinux 11.43%
send search entry 2.51% lock get internal 0.75% save i387 0.85%
ber printf 2.39% ham lookup 0.66% schedule 0.74%
is ad subtype 2.00% ham item 0.47% send sig info 0.59%
avl find 1.98% ham get cpage 0.41% restore i387 0.52%
ber write 1.91% db tas mutex lock 0.38% tcp sendmsg 0.48%

libc 20.43% libpthread 13.79% misc 3.63%

obtained when we use a BER cache together with IDL and IDL
stack slab caches. From the execution profile, we can see that
only 3.42% of execution events belongs to the BER encoding
routines after the addition of the BER cache.

XI. CONCLUSIONS AND FUTURE WORKS

In this paper, we analyzed the performance characteristics of
OpenLDAP 2.1 directory server, identified performance bot-
tlenecks, and provided appropriate solutions. First, we de-
signed an entry cache for back-bdb, a transactional backend
for OpenLDAP 2.1. Although the entry cache succeeded to
improve back-bdb’s performance significantly, back-bdb’s per-
formance turned out to be relatively low. By using a de-
tailed system profiling, we identified the index database ac-
cess and the IDL stack management as the two major sources
of the back-bdb’s performance degradation. We first proposed
the search candidate cache to eliminate these bottlenecks as a
proof of concept design. We, then, proposed the IDL cache to
reduce the index database access cost and the IDL stack slab
cache to eliminate frequent allocation and deallocation of large
chunks of memory. We verified the benefits of the two propos-
als by using the messaging scenario of the DirectoryMark di-
rectory benchmark suite as input workloads. By using a system
profiling technique, we confirmed that the performance bot-
tlenecks were effectively eliminated by the proposed designs.
The IDL cache and the IDL stack slab can improve the perfor-
mance of the OpenLDAP directory server for a wide range of
workloads having varying degree of searches to updates ratio.

As an on-going work, we also proposed the BER cache to
speed up the BER encoding part of the OpenLDAP 2.1 direc-
tory server. Because its performance benefit is dependent heav-
ily on the directory use patterns, we are planning to evaluate its
performance with the traces obtained from a real enterprise-
grade directory service.

In a memory constrained situation, relative sizes of the mul-
tiple caches in the system should be carefully determined for
optimal performance. Moreover, the size of those caches needs

to be adjusted on-the-fly, to cope with the changing workloads
and access patterns, in a highly dynamic, on-demand comput-
ing environment. The effective allocation of memory among
multiple caches is left as a further work.

We are also investigating performance improvements by the
per-thread memory allocator and various connection manage-
ment alternatives to improve performance further.
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