
Improving Connection Management
of the OpenLDAP Directory Server

Sang Seok Lim, Jong Hyuk Choi, Hubertus Franke
IBM T. J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598, USA

email:{slim,jongchoi,frankeh}@us.ibm.com

Kurt D. Zeilenga
email: kurt@OpenLDAP.org

ABSTRACT
This paper describes our effort to improve the performance of the connection man-
agement subsystem of the OpenLDAP directory server. Two proposed architec-
tures, the multi-listener and the lightweight listener architectures will be described
and compared to each other in this paper. This paper will also describe our effort to
improve the synchronization of multiple threads by introducing semaphore based
resource control. This paper shows that our efforts significantly improve the per-
formance of the OpenLDAP directory server in the presence of long latency op-
erations and reduces the overhead caused by unnecessary context switching and
inefficient event polling.

KEY WORDS
OS, Internet, LDAP, Connection Management

This paper was submitted for possible publication in the 24th IASTED International
Multi-Conference on Applied Informatics (Parallel and Distributed Computing and Net-
works) 2006.

1 Introduction

LDAP (Lightweight Directory Access Protocol) [4] is one of the key building
blocks of Linux information infrastructure together with relational databases. While
the data stored in the database is relational information, the data stored in the
LDAP server is hierarchical information such as the organizational and the iden-
tity data in the small to large scale enterprises and the naming and addressing data
in the Internet. In the enterprise IT environment, LDAP is currently being used as
the key information repository that stores majority of identity, credential, certifi-
cate, policy, and registry information. Figure 1 shows the conceptual architecture
of LDAP and RDBMS. Both of them consist of a frontend for request / reply
processing and a backend for data storage and retrieval. The LDAP server con-
sists of an LDAP frontend which processes LDAP queries consisting of the base,
filter, attribute specification, and other controls and a storage engine backend. The
database server consists of an SQL frontend and a storage backend.

The scalability of the LDAP and the database servers are instrumental in es-
tablishing scalable information infrastructure in Linux for various enterprise ap-
plications and middleware. This paper describes our efforts of improving the con-
nection management subsystem of the OpenLDAP directory server [11] - the in-
frastructural directory service software in Linux and other open operating systems.

The connection management subsystem in network servers manages multi-
ple concurrent connections to process incoming requests and to respond with
the processed results with the following objectives: 1) low latency response, 2)
high throughput, and 3) fairness. In order to achieve these key objectives at the
same time, it is important to maintain high concurrency among multiple connec-
tions. The concurrency can be achieved by implementing multiple execution con-
trol flows either by multiple threads [15, 14] or by the event driven program-
ming [1, 2, 13, 5]. When an execution control flow is expected to be blocked
waiting for incoming requests or I/O completion, it needs to be scheduled out and
other execution control flows are scheduled in to run to achieve high throughput
and fairness. Many research efforts have been made to propose and evaluate the
most optimized architectures of implementing concurrency.

Like most other network servers, the connection management subsystem sits
in the core of the main event processing loop ofslapd , the OpenLDAP directory
server daemon, determining the main programming structure and its scaling be-
havior. We have started investigating the connection management of OpenLDAP
since we found that its current architecture is suboptimal in terms of scalability,
resource control, and resilience to long latency operations. We architected two

2

Figure 1: Architecture of Directory and Database Servers.

new designs, the multi-listener and the lightweight listener architectures to im-
prove scalability and latency resilience. We also implemented a semaphore-based
resource control scheme to better synchronize multiple threads for reduced con-
text switching overhead and efficient event polling. As a result, the OpenLDAP
directory server will be able to support the Linux information infrastructure in a
more scalable and robust way.

The rest of this paper is organized as follows. The next section will summa-
rize the existing approaches to achieving high concurrency in the network servers.
Section 3 will describe the architecture of the current connection management
subsystem of the OpenLDAP directory server and its advantages. Then, we will
describe the two new architectures for improved scalability and resilience in detail
in Section 4 and their comparative performance evaluation in Section 5. Section 6
will describe the semaphore based resource control scheme and show the reduc-
tion in context switches and the resulting improvements in performance. Section
7 will summarize the paper.

2 Highly Concurrent Server Architectures

One of the challenges in building highly scalable LDAP services is dealing with
a high level concurrency required to support a large number of clients. There are

3

three main approaches to achieving high concurrency in network servers including
LDAP servers.

2.1 Multi-threaded Server Architecture

The multi-thread architecture relies on the scheduling mechanism of the under-
lying operating system to achieve concurrency. It further optimizes the multi-
process architecture by sharing the address space and hence by reducing the high
overhead of context management in the multi-process architecture. The multi-
thread architecture provides much better concurrency than the single-threaded ar-
chitecture since a new thread can continue to process an incoming request should
the current thread be blocked waiting for an event. A thread-pool approach opti-
mizes the multi-thread architecture further. A fixed number of worker threads are
created in advance and managed as a pool. A listener thread accepts new connec-
tions and operation requests and put them into the work queue. The threads in the
work thread pool will pick up the work request in the queue as soon as they finish
processing the current work.

2.2 Event-Driven Server Architecture

In order to reduce the context switching overhead and the high memory require-
ment for the stack space in the multi-thread architecture, the event-driven servers
rely on the non-blocking I/O primitives and the event dispatching mechanism of
the operating systems in order to implement multiple execution control flow in
a single thread. Compared to the kernel-thread based multi-thread architecture,
the event driven server architecture is more efficient because it does not require
context switching. When compared with the user-thread based multi-thread archi-
tecture, it does not have the performance problem of the user-level threading upon
blocking I/O. One disadvantage of the event-driven architecture is its complicated
programming model [15, 14, 9].

2.3 Hybrid Server Architecture

The hybrid server architecture combines the event-driven server to process non-
blocking operations with multi-threaded (or multi-process) server to process block-
ing operations. One of representative hybrid server is the asymmetric multi-
process event-driven architecture (AMPED) [12] which combines an event-driven
server with multiple helper processes (or threads) that handle blocking disk I/O

4

Figure 2: Connection Management Architecture of OpenLDAPslapd Directory
Server.

operations. Only when a disk operation is necessary, the main event-handling
process directs a helper to perform the operation on behalf of the main process.
This type of the server performed very well on a variety of workloads and outper-
formed two aforementioned architectures. But its programming complexity limits
its feasibility in real system deployments, making two previous architectures be-
come dominant in the deployment of practical servers.

3 Connection Management in OpenLDAP

The OpenLDAP directory server falls into the multi-threaded server architecture
with thread pool. The server consists of a single listener thread and multiple
worker threads. The listener takes care of all incoming TCP connection establish-
ment, and parsing and dispatching of incoming LDAP operation requests. The
worker threads handle individual LDAP requests by processing attribute filters,
accessing the database and writing results back to the clients. The operation of
the worker threads can potentially be blocked due to disk or network I/O. The
number of maximum worker threads in the pool is fixed. The current connec-
tion management architecture of OpenLDAPslapd is illustrated in Figure 2.
Even though this architecture conforms to the separation of concern between dif-
ferent types of worker tasks and the central listener task and well suited for the
requirements from the protocol specification to process multiple operations in a
connection simultaneously, it has several disadvantages:

1. The decoding of client requests encoded in BER (Basic Encoding Rules) [6]
of ASN.1 (Abstract Syntax Notation One) [7] is quite heavyweight, even

5

Figure 3: Multiple Listener Thread Architecture.

though LDAP does not use a full fledged BER which of X.500 [8]. This
limits concurrency when there are multiple operation requests pending the
completion of the BER processing of the current request. These pending la-
tencies will add up to the increased end-to-end latency of LDAP operations.

2. The potentially lengthy operations in connection establishment such as the
reverse DNS lookup and the TCP wrapper can significantly degrade the
system throughput and operation latency. For instance, if the reverse DNS
lookup for a connection establishment take several hundred milliseconds,
the server cannot do anything but waiting for the response during that time.
When this happens, clients will experience very slow responses.

3. When there are a large number of idle connections present because of the
WAN effects and of the clients’ request behavior, it has been observed that
the server throughput can be degraded because of the overhead of the event
dispatching primitives. If this happens in OpenLDAPslapd , its effect can
be exacerbated by the presence of the heavyweight listener thread.

Because an enterprise scale and the Internet scale LDAP directories are re-
quired to store over hundreds of million directory entries and required to support
a large number of clients including LDAP proxies, replica LDAP servers, and or-
dinary LDAP clients, local or remote, it is essential to improve this suboptimal
behavior in terms of concurrency of theslapd ’s connection management sub-
system.

6

Figure 4: Lightweight Listener Thread Architecture.

4 Two New Architectures

In order to improve the concurrency of the current connection management design
of OpenLDAPslapd , we architected two new designs. In the first approach,
multiple listener threads are processing LDAP requests concurrently so that mul-
tiple LDAP requests can be simultaneously processed in spite of the presence of
the lengthy operations. On the other hand, the second approach makes the lis-
tener threads much lightweight by moving lengthy operations to the actual worker
threads. In this section, we will discuss on these architectures in detail.

4.1 Multi-Listener Architecture

As the first approach to improving the concurrency ofslapd , we architected it to
have multiple listener threads. Figure 3 illustrates the architecture of the multiple
listener thread design. The single listener thread in the original architecture was
cloned to multiple listener threads, each of which is listening to the connections in
a partition of the entire connection space. The job of the individual listener thread
is identical to that of the original single listener except for the fact that it does not
monitor all the connections. It performs the same connection establishment tasks
as well as the BER decoding before it hands the operation over to a worker thread.
Now that there are multiple of them, however, other listener threads can continue
to accept new connections and operations even though some of them are being hit
by long latency operations. The number of listener threads is configurable in our
implementation.

7

4.2 Lightweight-Listener Architecture

In the second approach, we architected the single listener thread much lightweight
instead of multiplying it. Figure 4 illustrates its architecture. In this design, the
listener thread performs the event dispatching only. Tasks such as connection
establishment, request reading and decoding are performed in the worker threads
before they perform their original tasks, processing of individual operations. Even
though there exists only one listener, this architecture does not have the lim-
ited concurrency problem as in the original single listener thread architecture,
because the lightweight listener thread only blocks on the event dispatching prim-
itives such asselect() andepoll() . The lightweight listener will be able to
process the incoming request events even though some of the worker threads are
being blocked by long latency operations.

5 Comparative Evaluation of Multi- and Lightweight-
Listener Architectures

In this section, we compare the performance of the two new connection manage-
ment architectures for OpenLDAP in two different scenarios. In the first scenario,
we examine the performance characteristics of the two new schemes with the
original architecture in the presence of long latency operations in the connection
management. In the second scenario, we examine the performance characteristics
in the presence of many idle connections to simulate a WAN environment.

The system under test is an IBM xSeries 445 server having 4 2.8GHz Xeon
processors and 12GB main memory. The DirectoryMark scripts of Mindcraft
were run on an IBM xSeries 445 server having 8 2.8GHz Xeon processors to
simulate LDAP clients. The Gigabit Ethernet was used as the connection between
the server and the client. The OpenLDAP 2.2 along with Berkeley DB 4.3 was
used for the evaluation. The server operating system is SuSE SLES9 with the
Linux kernel version 2.6.5.

Figure 5 shows the throughput of the three architectures in the presence of long
latency operations. In this experiment, the reverse DNS lookup operations which
can take up to 2sec were introduced as the long latency operation. As shown in
the figure, the throughput of the original, single threaded listener architecture ex-
periences a serious degradation. It turned out that a slight presence of long latency
operations such as the reverse DNS lookup could cause a significant degradation
to the performance of the original single threaded listener architecture.

8

Figure 5: Performance Comparison of New Architectures with Reverse DNS
Lookup.

Figure 5 also shows that the throughput of the multi-listener architecture and
that of the lightweight listener architecture. The figure shows that the increased
concurrency in the multi-listener architecture is able to boost throughput by a
significant amount. The throughput improvement of the lightweight listener ar-
chitecture is turned out to be even more significant. With the lightweight listener
architecture, OpenLDAPslapd exhibits throughput with the reverse DNS oper-
ations as high as over 60% of the original throughput without the reverse DNS
operations.

The multi-listener thread architecture does not perform as well as the light-
weight listener thread architecture because it requires a complicated file descriptor
management scheme and an additional synchronization mechanism to coordinate
the execution of the multiple listener threads while the lightweight listener thread
architecture does not require such mechanisms.

Figure 6 shows the throughput of the three connection management archi-
tectures in the presence of 4000 idle connections simulating the effect of WAN
connections which are common in the LDAP servers in the Internet environment.
As shown in the figure, both the multi-listener and the lightweight listener thread
architectures perform better than the original single listener thread architecture.
The increased concurrency in the two new connection management architectures
could relieve the overhead of the event dispatching scheme when there exist many
idle connections.

Even though the lightweight listener design we implemented has shown a

9

Figure 6: Performance Comparison of New Architectures with Idle Connections.

much improved performance in the presence of long latency operations and many
idle connections, we observed unnecessary context switches and inefficient event
polling during the execution of OpenLDAPslapd . This led us to a further opti-
mization in theslapd ’s threading behavior.

6 Semaphore Based Resource Control

We found that the excessive context switching and inefficient event polling over-
head we observed in the lightweight listener thread architecture come from sub-
optimal coordination of the execution of the listener thread with respect to the
available worker threads which is measured and shown in Figure 7. Figure 7 (a)
reveals that throughput of the server is degraded as the number of concurrent con-
nections is increased over 32 and context switching occurs three times in average
to process a single operation. In Figure 7 (b), event/select and event readiness
ratio represent the average number of event-ready connections per each select call
and the ratio of event-ready connections over overall connections at a given time,
respectively. Even though event/select is increased as the number of concurrent
connections is increased, event readiness ratio drops rather steeply. It leads the
server to experience high event polling overheads which reaches up to 7.5% of
overall CPU time and 20% throughput drop, compared to the peak throughput at
32 concurrent connections. From this measurement, we became convinced that
the execution of the listener thread needs to be coordinated in a way to minimize
context switching and prevent inefficient event polling.

10

0

5,000

10,000

15,000

20,000

25,000

1 4 8 16 32 64 128 256 512 1000 3,000 6,000 10,000

of Concurrent Connections

op
er

at
io

n/
se

c

0

1

2

3

4

5

6

co
nt

ex
t s

w
itc

hi
ng

/o
pe

ra
tio

n

operation/sec context switching/operation

(a) Context Switching Overhead.

0

50

100

150

200

250

1 4 8 16 32 64 128 256 512 1,000 3,000 6,000 10,000

of Concurrent Connections

ev
en

t/s
el

ec
t

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

ev
en

t r
ea

di
ne

ss
 r

at
io

event/select
event readi ness rat io

(b) Event Polling Efficiency.

Figure 7: Context Switching Overhead and Event Polling Efficiency.

11

Figure 8: Semaphore Resource Control.

We designed a semaphore-based resource control scheme to better coordi-
nate the execution of the listener thread. Figure 8 illustrates our approach. With
the semaphore control, the listener thread waits for a worker thread to become
available again bysem wait() with the resource count set to the number of
worker threads. When a worker thread becomes available, it notifies the event by
sem post() . In this way, it is possible to make the listener thread try to dispatch
events only when there are available worker threads to pick up the operation. As
a further optimization towards reducing the context switching overhead, multiple
worker threads can be treated as a unit of resource allocation. In this scheme, the
lightweight listener thread wakes up when as many worker threads as there are
in the allocation unit become available at the same time. This further reduces the
context switching overhead and prevents frequent event polling.

Figure 9 (a) shows the throughput improvement achieved by the semaphore-
based resource control scheme. The bars represents throughput of the original
lightweight listener architecture and the one with the semaphore based resource
control and the lines represents the rate at which theselect() primitive is in-
voked. As shown in the figure, the semaphore based resource control scheme
decreases theselect() rate as the number of concurrent connections increases.
As shown in Figure 9 (b) the context switching/operation drops significantly to 2
from 3 without the semaphore control as shown in Figure 7 (a). This directly leads
to the reduction in the context switching overhead and improvement in efficiency
of event polling by batching more ready events in one select call. As a result, it
was possible to obtain more than 16% of throughput gain by implementing the
semaphore-based resource control scheme.

12

0

5,000

10,000

15,000

20,000

25,000

1 4 8 16 32 64 128 256 512 1024 3000 6000 10000

of Concurrent Connections

o
p

/s
ec

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

se
le

ct
()

/s
ec

Semaphore(op/sec) Original (op/sec)

Semaphore (select()/sec) Original(select()/sec)

(a) Throughput and Event Handling Efficiency.

0

5,000

10,000

15,000

20,000

25,000

1 4 8 16 32 64 128 256 512 1000 3,000 6,000 10,000

of Concurrent Connections

o
p

er
at

io
n

/s
ec

0

1

2

3

4

5

6

co
n

te
xt

 s
w

it
ch

in
g

/o
p

er
at

io
n

operation/sec
context switching/operation

(b) Context Switching Overhead.

Figure 9: Performance of Semaphore Resource Control.

13

7 Conclusion

In this paper, we described our efforts of improving the performance of the con-
nection management subsystem of the OpenLDAP directory server by providing
much improved concurrency management and semaphore resource control. As
a result of our efforts, the OpenLDAP directory server not only becomes much
more resilient to long latency operations and many idle connections which are
quite common in the Internet environment but also became capable of sustaining
much improved throughput. Together with our contributions to the OpenLDAP
software in improving the scalability ofslapd and Berkeley DB [3] and in ar-
chitecting Component Matching and ASN.1 Awareness [10], our efforts of im-
proving the scalability and resilience of the connection management subsystem of
OpenLDAP will significantly improve the enterprise readiness of the OpenLDAP
directory services software suite and hence the enterprise readiness of the Linux
information infrastructure.

8 Acknowledgements

The authors would like to express special thanks to the OpenLDAP development
community for invaluable feedbacks and comments. Special thanks go to Howard
Chu of Symas Corp, Pierangelo Masarati of Polytecnico di Milano, and Quanah
Gibson-Mount of Stanford University.

References

[1] G. Banga and J. C. Mogul. Scalable kernel performance for Internet servers
under realistic loads. InUSENIX 1998 Annual Technical Conference, 1998.

[2] G. Banga, J. C. Mogul, and P. Druschel. A scalable and explicit event deliv-
ery mechanism for UNIX. InUSENIX 1998 Annual Technical Conference,
1999.

[3] J. H. Choi, H. Franke, and K. D. Zeilenga. Performance of the OpenLDAP
directory server with multiple caching. InProceedings of International Sym-
posium on Performance Evaluation of Computers and Telecommunication
Systems, July 2003.

14

[4] J. Hodges, R. Morgan, and M. Wahl. Lightweight directory access protocol
(v3): Technical specification. RFC 3377, September 2002.

[5] J. Hu, Pyatali, and D. Schmidt. Measuring the impact of event dispatching
and concurrency models on web server performance over high-speed net-
works. Inthe 2nd IEEE Global Internet Conference, November 1997.

[6] ITU-T Rec. X.690, ASN.1 encoding rules: Specification of basic encoding
rules (BER), canonical encoding rules (CER), and distinguished encoding
rules (DER), 1994.

[7] ITU-T Rec. X.680, Abstract syntax notation one (ASN.1): Specification of
basic notation, December 1997.

[8] ITU-T Rec. X.500, The directory: Overview of concepts, models and ser-
vice, February 2001.

[9] P. Joubert, R. King, R. Neves, M. Russinovich, and J. Tracey. High-
performance memory-based web servers: Kernel and user-space perfor-
mance). InUSENIX Annual Technical Conference, 2001.

[10] S. S. Lim, J. H. Choi, and K. D. Zeilenga. Design and implementation of
component matching for flexible and secure certificate access in pki. InProc.
of the 4th Annual PKI R&D Workshop ”Multiple Paths to Trust”, pages 41–
51, August 2005. Also published as a NIST Technical Publication, NISTIR
7224, ISBN 1-886843-38-4.

[11] OpenLDAP.http://www.openldap.org .

[12] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable
web server. InUSENIX Annual Technical Conference, 1999.

[13] N. Provos and C. Lever. Scalable network IO in Linux. InUSENIX 1998
Annual Technical Conference, FREENIX track, 2000.

[14] R. von Behren, J. Condit, and E. Brewer. Why events are a bad idea (for
high-concurrency servers). InHotOS Workshop, May 2003.

[15] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer. Capriccio:
Scalable threads for Internet services. InACM Symposium on Operating
Systems Principles, 2003.

15

